def __iter__(self):
#print('iter')
init_state_names = [x[0] for x in self.init_states]
for k in range(self.count):
data = []
label = []
for i in range(self.batch_size):
img_name = self.image_set_index[i + k*self.batch_size]
img = cv2.imread(os.path.join(self.data_path, img_name + '.jpg'), cv2.IMREAD_GRAYSCALE)
#img = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
img = cv2.resize(img, self.data_shape)
img = img.reshape((1, data_shape[1], data_shape[0]))
#print(img)
#img = img.transpose(1, 0)
#img = img.reshape((data_shape[0] * data_shape[1]))
img = np.multiply(img, 1/255.0)
#print(img)
data.append(img)
ret = np.zeros(self.num_label, int)
plate_str = self.gt[int(img_name)]
#print(plate_str)
for number in range(len(plate_str)):
ret[number] = self.classes.index(plate_str[number]) + 1
#print(ret)
label.append(ret)
data_all = [mx.nd.array(data)] + self.init_state_arrays
label_all = [mx.nd.array(label)]
data_names = ['data'] + init_state_names
label_names = ['label']
data_batch = SimpleBatch(data_names, data_all, label_names, label_all)
yield data_batch
train_crnn.py 文件源码
python
阅读 26
收藏 0
点赞 0
评论 0
评论列表
文章目录