def predict_mlp(image_file):
image = cv2.imdecode(np.fromstring(image_file.read(), np.uint8), cv2.CV_LOAD_IMAGE_UNCHANGED)
if image is not None:
features = np.array([image_to_feature_vector(image)])
loaded_model = pickle.load(open(MODEL_PATH + "/mlp_model.sav", 'rb'))
scaler = pickle.load(open(MODEL_PATH + "/scaler_model.sav", "rb"))
features = scaler.transform(features)
return loaded_model.predict(features)[0]
else:
raise "Failed"
评论列表
文章目录