def __caffe_predict(self, net, height, width, url):
# logger = logging.getLogger(__name__)
#
# logger.info("caffe_predict has been called")
input_layer = net.inputs[0]
output_layer = net.outputs[0]
r = requests.get(url, allow_redirects=False)
arr = numpy.asarray(bytearray(r.content), dtype=numpy.uint8)
img = cv2.imdecode(arr, -1)
resized_img = imresize(img, (height,width), 'bilinear')
transposed_resized_img = numpy.transpose(resized_img, (2,0,1))
reqd_shape = (1,) + transposed_resized_img.shape
#net.blobs["data_q"].reshape(*reqd_shape)
#net.blobs["data_q"].data[...] = transposed_resized_img
net.blobs[input_layer].reshape(*reqd_shape)
net.blobs[input_layer].data[...] = transposed_resized_img
net.forward()
#result = net.blobs['latent_q_encode'].data[0].tolist()
result = net.blobs[output_layer].data[0].tolist()
return result
评论列表
文章目录