project_v2.py 文件源码

python
阅读 29 收藏 0 点赞 0 评论 0

项目:SelfDrivingCar 作者: aguijarro 项目源码 文件源码
def process_image(image):
    # printing out some stats and plotting
    print('This image is:', type(image), 'with dimesions:', image.shape)
    gray = grayscale(image)
    # Define a kernel size and apply Gaussian smoothing
    kernel_size = 5
    blur_gray = gaussian_blur(gray, kernel_size)
    # plt.imshow(blur_gray, cmap='gray')

    # Define our parameters for Canny and apply
    low_threshold = 45 #50
    high_threshold = 150 #150
    edges = canny(blur_gray, low_threshold, high_threshold)

    # This time we are defining a four sided polygon to mask
    imshape = image.shape
    #vertices = np.array([[(0,imshape[0]),(475, 310), (475, 310), (imshape[1],imshape[0])]], dtype=np.int32)
    vertices = np.array([[(0,imshape[0]),(450, 330), (490, 310), (imshape[1],imshape[0])]], dtype=np.int32)    
    masked_edges = region_of_interest(edges, vertices)

    # Define the Hough transform parameters
    # Make a blank the same size as our image to draw on
    rho = 1 # distance resolution in pixels of the Hough grid
    theta = np.pi/180 # angular resolution in radians of the Hough grid
    threshold = 15    # minimum number of votes (intersections in Hough grid cell)
    min_line_length = 40 #minimum number of pixels making up a line 150 - 40
    max_line_gap = 130 # maximum gap in pixels between connectable line segments 58 -95
    line_image = np.copy(image)*0 # creating a blank to draw lines on

    lines = hough_lines(masked_edges, rho, theta, threshold, min_line_length, max_line_gap)
    # Draw the lines on the edge image
    lines_edges = weighted_img(lines, image)
    return lines_edges
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号