def hookValData(self, sampleIdxs):
assert len(sampleIdxs) > 0, 'we need a non-empty batch list'
input_list, flow_list = [], []
for idx in sampleIdxs:
img_list = self.valList[idx]
multi_input = []
multi_flow = []
for time_idx in xrange(self.time_step):
imgData = cv2.imread(os.path.join(self.img_path, img_list[time_idx]), cv2.IMREAD_COLOR)
multi_input.append(np.expand_dims(cv2.resize(imgData, (self.image_size[1], self.image_size[0])), 0))
# We have self.time_step images, but self.time_step - 1 flows.
if time_idx != self.time_step - 1:
flow = utils.readFlow(os.path.join(self.data_path, 'training', "flow", (img_list[time_idx][:-4] + ".flo")))
multi_flow.append(np.expand_dims(flow, 0))
input_list.append(np.concatenate(multi_input, axis=3))
flow_list.append(np.concatenate(multi_flow, axis=3))
return np.concatenate(input_list, axis=0), np.concatenate(flow_list, axis=0)
评论列表
文章目录