def preprocessing_imgs(train_imgs, reduced_size = None):
# resizing
if reduced_size is not None:
train_imgs_p = np.ndarray((train_imgs.shape[0], train_imgs.shape[1]) + reduced_size, dtype=np.float32)
for i in range(train_imgs.shape[0]):
train_imgs_p[i, 0] = cv2.resize(train_imgs[i, 0], (reduced_size[1], reduced_size[0]), interpolation=cv2.INTER_CUBIC) # INVERSE ORDER! cols,rows
else:
train_imgs_p = train_imgs.astype(np.float32)
# ZMUV normalization
m = np.mean(train_imgs_p).astype(np.float32)
train_imgs_p -= m
st = np.std(train_imgs_p).astype(np.float32)
train_imgs_p /= st
return train_imgs_p,m,st
processing.py 文件源码
python
阅读 41
收藏 0
点赞 0
评论 0
评论列表
文章目录