def adapt_images_and_densities(images, gts, slice_w = slice_w, slice_h = slice_h):
out_images = []
out_gts = []
for i, img in enumerate(images):
img_h, img_w, _ = img.shape
n_slices_h = int(round(img_h/slice_h))
n_slices_w = int(round(img_w/slice_w))
new_img_h = float(n_slices_h *slice_h)
new_img_w = float(n_slices_w*slice_w)
fx = new_img_w / img_w
fy = new_img_h/img_h
out_images.append(cv2.resize(img, None, fx = fx, fy = fy, interpolation = cv2.INTER_CUBIC))
assert out_images[-1].shape[0]%slice_h == 0 and out_images[-1].shape[1]%slice_w == 0
if gts is not None:
out_gts.append(density_resize(gts[i], fx, fy))
return (out_images, out_gts)
data_agumentation.py 文件源码
python
阅读 54
收藏 0
点赞 0
评论 0
评论列表
文章目录