def getNext_batch(self):
paths = self.images[self.pointer:self.pointer+self.batch_size]
labels = self.labels[self.pointer:self.pointer+self.batch_size]
self.pointer += self.batch_size
images = np.ndarray([self.batch_size,self.scale_size[0],self.scale_size[1],3])
for i in range(len(paths)):
image = cv2.imread(paths[i])
#print ('file name is {}'.format(paths[i]))
#cv2.imshow(paths[i],image)
#cv2.waitKey(0)
if self.horizontal and np.random.random()<0.5:
image = cv2.flip(image,1)
image = cv2.resize(image,(self.scale_size[0],self.scale_size[1]))
image = image.astype(np.float32)
image -= self.mean
images[i] = image
one_hot_labels = np.zeros((self.batch_size,self.n_class))
for i in range(len(labels)):
one_hot_labels[i][int(labels[i])] = 1
return images,one_hot_labels
评论列表
文章目录