def detect():
stream = io.BytesIO()
#Get the picture (low resolution, so it should be quite fast)
#Here you can also specify other parameters (e.g.:rotate the image)
with picamera.PiCamera() as camera:
camera.resolution = (700, 525)
camera.capture(stream, format='jpeg')
buff = np.fromstring(stream.getvalue(), dtype=np.uint8)
#Now creates an OpenCV image
img = cv2.imdecode(buff, 1)
#img = cv2.imread('coffee.jpg')
face_cascade = cv2.CascadeClassifier('/home/pi/Documents/OpenCV_Projects/XML_Files/coffeePot.xml')
eye_cascade = cv2.CascadeClassifier('/home/pi/Documents/OpenCV_Projects/XML_Files/liquid.xml')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
faces = face_cascade.detectMultiScale(gray, 1.2, 500, minSize=(80,100))
for (x,y,w,h) in faces:
img = cv2.rectangle(img,(x,y),(x+w,y+h),(255,0,0),2)
roi_gray = gray[y:y+h, x:x+w]
roi_color = img[y:y+h, x:x+w]
eyes = eye_cascade.detectMultiScale(roi_gray, 1.2, 10, minSize=(70,50))
return houghlines(roi_color,x,y,w,h)
评论列表
文章目录