def cluster(frame_matrix):
new_frame_matrix = []
i = 0
for frame in frame_matrix:
print "reader {} frame".format(i)
i += 1
Z = frame.reshape((-1, 1))
Z = np.float32(Z)
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 10, 1.0)
K = 2
ret, label, center = cv2.kmeans(Z, K, criteria, 10, cv2.KMEANS_RANDOM_CENTERS)
center = np.uint8(center)
res = center[label.flatten()]
res2 = res.reshape((frame.shape))
new_frame_matrix.append(res2)
cv2.imshow('res2', res2)
cv2.waitKey(1)
cv2.destroyAllWindows()
评论列表
文章目录