def get_train_batch(noise=500):
ran = np.random.randint(600,5800,size=10,dtype='int')
#print(ran)
image = []
label = []
label_0 = []
n_pic = ran
# print(n_pic)
for i in range(10):
frame_0 = cv2.imread('./cropedoriginalPixel2/%d.jpg' % (n_pic[i]), 0)
frame_0 = add_noise(frame_0, n = noise)
frame_0 = cv2.resize(frame_0, (24, 24))
frame_0 = np.array(frame_0).reshape(-1)
frame_0 = frame_0 / 255.0
image.append(frame_0)
#print(np.shape(image))
for i in range(10):
frame_1 = cv2.imread('./cropedoriginalPixel2/%d.jpg' % (n_pic[i]), 0)
frame_1 = cv2.resize(frame_1, (24, 24))
frame_1 = np.array(frame_1).reshape(-1)
frame_1 = gray2binary(frame_1)
label.append(frame_1)
return np.array(image,dtype='float') , np.array(label,dtype='float')
评论列表
文章目录