def train_svm():
data = json.loads(request.data)
detections = data.get('detections', None)
image = data.get('image', None)
positive_crop = data.get('positive_crop', None)
use_dense_sift = data.get('use_dense_sift', False)
clustering = data.get('clustering', 'kmeans')
augment_data = data.get('augment_data', True)
if not (detections and image and positive_crop):
return json.dumps({'error': 'Parameters error'})
image = imread_from_base64(image)
positive_crop = imread_from_base64(positive_crop)
SVM_MODEL = train_exemplar_svm_on_sift_features(
image, positive_crop,
detections[0], detections[1],
dense_sift=use_dense_sift,
clustering=clustering,
augment_data=augment_data
)
return json.dumps({'result': 'Success'})
评论列表
文章目录