def build_summaries(network):
"""
"""
# summary_loss = tf.summary.scalar('transfer loss', network['loss'])
images_c = network['image_content']
images_s = network['image_styled']
images_c = tf.slice(
images_c,
[0, FLAGS.padding, FLAGS.padding, 0],
[-1, 256, 256, -1])
images_s = tf.slice(
images_s,
[0, FLAGS.padding, FLAGS.padding, 0],
[-1, 256, 256, -1])
images_c = tf.reshape(images_c, [1, FLAGS.batch_size * 256, 256, 3])
images_s = tf.reshape(images_s, [1, FLAGS.batch_size * 256, 256, 3])
images_a = tf.concat([images_c, images_s], axis=2)
images_a = images_a * 127.5 + 127.5
# images_a = tf.add(images_a, VggNet.mean_color_bgr())
images_a = tf.reverse(images_a, [3])
images_a = tf.saturate_cast(images_a, tf.uint8)
summary_image = tf.summary.image('all', images_a, max_outputs=4)
# summary_plus = tf.summary.merge([summary_image, summary_loss])
return {
# 'summary_part': summary_loss,
'summary_plus': summary_image,
}
评论列表
文章目录