def build_summaries(model):
"""
"""
images_summary = []
generations = [
('summary_x_gx', 'xx_real', 'gx_fake'),
('summary_y_fy', 'yy_real', 'fy_fake')]
for g in generations:
images = tf.concat([model[g[1]], model[g[2]]], axis=2)
images = tf.reshape(images, [1, FLAGS.batch_size * 256, 512, 3])
images = tf.saturate_cast(images * 127.5 + 127.5, tf.uint8)
summary = tf.summary.image(g[0], images, max_outputs=4)
images_summary.append(summary)
#
summary_loss_d = tf.summary.scalar('d', model['loss_d'])
summary_loss_dx = tf.summary.scalar('dx', model['loss_dx'])
summary_loss_dy = tf.summary.scalar('dy', model['loss_dy'])
summary_d = \
tf.summary.merge([summary_loss_d, summary_loss_dx, summary_loss_dy])
summary_loss_g = tf.summary.scalar('g', model['loss_g'])
summary_loss_gx = tf.summary.scalar('gx', model['loss_gx'])
summary_loss_fy = tf.summary.scalar('fy', model['loss_fy'])
summary_g = \
tf.summary.merge([summary_loss_g, summary_loss_gx, summary_loss_fy])
return {
'images': tf.summary.merge(images_summary),
'loss_d': summary_d,
'loss_g': summary_g,
}
评论列表
文章目录