def build_summaries(gan_graph):
"""
"""
generator_loss_summary = tf.summary.scalar(
'generator loss', gan_graph['generator_loss'])
discriminator_loss_summary = tf.summary.scalar(
'discriminator loss', gan_graph['discriminator_loss'])
fake_grid = tf.reshape(gan_graph['generator_fake'], [1, 64 * 32, 32, 1])
fake_grid = tf.split(fake_grid, 8, axis=1)
fake_grid = tf.concat(fake_grid, axis=2)
fake_grid = tf.saturate_cast(fake_grid * 127.5 + 127.5, tf.uint8)
generator_fake_summary = tf.summary.image(
'generated image', fake_grid, max_outputs=18)
return {
'generator_fake_summary': generator_fake_summary,
'generator_loss_summary': generator_loss_summary,
'discriminator_loss_summary': discriminator_loss_summary,
}
评论列表
文章目录