def conv2d_fixed_padding(self, inputs, filters, kernel_size, strides, name=None, relu=True):
if strides > 1:
inputs = self.fixed_padding(inputs, kernel_size)
inputs = tf.layers.conv2d(
inputs=inputs, filters=filters, kernel_size=kernel_size, strides=strides,
padding=('SAME' if strides == 1 else 'VALID'), use_bias=False,
kernel_initializer=tf.variance_scaling_initializer(), name=name)
if relu:
return self.batch_norm_relu(inputs, name)
else:
return self.batch_norm(inputs, name)
评论列表
文章目录