def testRealValuedColumnHavingMultiDimensions(self):
country = tf.contrib.layers.sparse_column_with_hash_bucket(
"country", hash_bucket_size=5)
age = tf.contrib.layers.real_valued_column("age")
# The following RealValuedColumn has 3 dimensions.
incomes = tf.contrib.layers.real_valued_column("incomes", 3)
with tf.Graph().as_default():
features = {"age": tf.constant([[1], [1]]),
"incomes": tf.constant([[100., 200., 300.], [10., 20., 30.]]),
"country": tf.SparseTensor(values=["US", "SV"],
indices=[[0, 0], [1, 0]],
shape=[2, 2])}
output, column_to_variable, _ = (
tf.contrib.layers.weighted_sum_from_feature_columns(
features, [country, age, incomes],
num_outputs=1))
with self.test_session() as sess:
tf.initialize_all_variables().run()
tf.initialize_all_tables().run()
incomes_weights = column_to_variable[incomes][0]
sess.run(incomes_weights.assign([[0.1], [0.2], [0.3]]))
self.assertAllClose(output.eval(), [[140.], [14.]])
评论列表
文章目录