feature_column_ops_test.py 文件源码

python
阅读 26 收藏 0 点赞 0 评论 0

项目:lsdc 作者: febert 项目源码 文件源码
def testRealValuedColumnHavingMultiDimensions(self):
    country = tf.contrib.layers.sparse_column_with_hash_bucket(
        "country", hash_bucket_size=5)
    age = tf.contrib.layers.real_valued_column("age")
    # The following RealValuedColumn has 3 dimensions.
    incomes = tf.contrib.layers.real_valued_column("incomes", 3)

    with tf.Graph().as_default():
      features = {"age": tf.constant([[1], [1]]),
                  "incomes": tf.constant([[100., 200., 300.], [10., 20., 30.]]),
                  "country": tf.SparseTensor(values=["US", "SV"],
                                             indices=[[0, 0], [1, 0]],
                                             shape=[2, 2])}
      output, column_to_variable, _ = (
          tf.contrib.layers.weighted_sum_from_feature_columns(
              features, [country, age, incomes],
              num_outputs=1))
      with self.test_session() as sess:
        tf.initialize_all_variables().run()
        tf.initialize_all_tables().run()

        incomes_weights = column_to_variable[incomes][0]
        sess.run(incomes_weights.assign([[0.1], [0.2], [0.3]]))
        self.assertAllClose(output.eval(), [[140.], [14.]])
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号