summary.py 文件源码

python
阅读 29 收藏 0 点赞 0 评论 0

项目:tensorboard 作者: tensorflow 项目源码 文件源码
def op(name,
       images,
       max_outputs=3,
       display_name=None,
       description=None,
       collections=None):
  """Create an image summary op for use in a TensorFlow graph.

  Arguments:
    name: A unique name for the generated summary node.
    images: A `Tensor` representing pixel data with shape `[k, w, h, c]`,
      where `k` is the number of images, `w` and `h` are the width and
      height of the images, and `c` is the number of channels, which
      should be 1, 3, or 4. Any of the dimensions may be statically
      unknown (i.e., `None`).
    max_outputs: Optional `int` or rank-0 integer `Tensor`. At most this
      many images will be emitted at each step. When more than
      `max_outputs` many images are provided, the first `max_outputs` many
      images will be used and the rest silently discarded.
    display_name: Optional name for this summary in TensorBoard, as a
      constant `str`. Defaults to `name`.
    description: Optional long-form description for this summary, as a
      constant `str`. Markdown is supported. Defaults to empty.
    collections: Optional list of graph collections keys. The new
      summary op is added to these collections. Defaults to
      `[Graph Keys.SUMMARIES]`.

  Returns:
    A TensorFlow summary op.
  """
  if display_name is None:
    display_name = name
  summary_metadata = metadata.create_summary_metadata(
      display_name=display_name, description=description)
  with tf.name_scope(name), \
       tf.control_dependencies([tf.assert_rank(images, 4),
                                tf.assert_type(images, tf.uint8),
                                tf.assert_non_negative(max_outputs)]):
    limited_images = images[:max_outputs]
    encoded_images = tf.map_fn(tf.image.encode_png, limited_images,
                               dtype=tf.string,
                               name='encode_each_image')
    image_shape = tf.shape(images)
    dimensions = tf.stack([tf.as_string(image_shape[1], name='width'),
                           tf.as_string(image_shape[2], name='height')],
                          name='dimensions')
    tensor = tf.concat([dimensions, encoded_images], axis=0)
    return tf.summary.tensor_summary(name='image_summary',
                                     tensor=tensor,
                                     collections=collections,
                                     summary_metadata=summary_metadata)
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号