def create_net(self, shape):
print "Creat Net"
self.x = tf.placeholder(shape=[None, shape], name="x", dtype=tf.float32)
self.y = tf.placeholder(shape=[None], name="y", dtype=tf.float32)
out = layers.fully_connected(self.x, num_outputs=5, activation_fn=tf.nn.relu, weights_initializer=tf.contrib.layers.xavier_initializer())
out = layers.fully_connected(out, num_outputs=3, activation_fn=tf.nn.relu, weights_initializer=tf.contrib.layers.xavier_initializer())
self.net = layers.fully_connected(out, num_outputs=1, activation_fn=None, weights_initializer=tf.contrib.layers.xavier_initializer())
self.net = tf.reshape(self.net, (-1, ))
l2 = (self.net - self.y) * (self.net - self.y)
self.train = tf.train.AdamOptimizer(1e-4).minimize(l2)
tf.global_variables_initializer().run()
评论列表
文章目录