tf_util.py 文件源码

python
阅读 30 收藏 0 点赞 0 评论 0

项目:distributional_perspective_on_RL 作者: Kiwoo 项目源码 文件源码
def create_net(self, shape):
        print "Creat Net"
        self.x = tf.placeholder(shape=[None, shape], name="x", dtype=tf.float32)
        self.y = tf.placeholder(shape=[None], name="y", dtype=tf.float32)

        out = layers.fully_connected(self.x, num_outputs=5, activation_fn=tf.nn.relu, weights_initializer=tf.contrib.layers.xavier_initializer())
        out = layers.fully_connected(out, num_outputs=3, activation_fn=tf.nn.relu, weights_initializer=tf.contrib.layers.xavier_initializer())
        self.net = layers.fully_connected(out, num_outputs=1, activation_fn=None, weights_initializer=tf.contrib.layers.xavier_initializer())
        self.net = tf.reshape(self.net, (-1, ))
        l2 = (self.net - self.y) * (self.net - self.y)
        self.train = tf.train.AdamOptimizer(1e-4).minimize(l2)
        tf.global_variables_initializer().run()
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号