def conv(inputs, kernel_shape, bias_shape, strides, w_i, b_i=None, activation=tf.nn.relu):
# ??tf.layers
# relu1 = tf.layers.conv2d(input_imgs, filters=24, kernel_size=[5, 5], strides=[2, 2],
# padding='SAME', activation=tf.nn.relu,
# kernel_initializer=w_i, bias_initializer=b_i)
weights = tf.get_variable('weights', shape=kernel_shape, initializer=w_i)
conv = tf.nn.conv2d(inputs, weights, strides=strides, padding='SAME')
if bias_shape is not None:
biases = tf.get_variable('biases', shape=bias_shape, initializer=b_i)
return activation(conv + biases) if activation is not None else conv + biases
return activation(conv) if activation is not None else conv
# ???bias??????relu
评论列表
文章目录