def K(self, X, X2=None, presliced=False):
if X2 is None:
d = tf.fill(tf.stack([tf.shape(X)[0]]), tf.squeeze(self.variance))
return tf.matrix_diag(d)
else:
shape = tf.stack([tf.shape(X)[0], tf.shape(X2)[0]])
return tf.zeros(shape, settings.float_type)
评论列表
文章目录