def eKxz(self, Z, Xmu, Xcov):
"""
Also known as phi_1: <K_{x, Z}>_{q(x)}.
:param Z: MxD inducing inputs
:param Xmu: X mean (NxD)
:param Xcov: NxDxD
:return: NxM
"""
# use only active dimensions
Xcov = self._slice_cov(Xcov)
Z, Xmu = self._slice(Z, Xmu)
D = tf.shape(Xmu)[1]
if self.ARD:
lengthscales = self.lengthscales
else:
lengthscales = tf.zeros((D,), dtype=settings.float_type) + self.lengthscales
vec = tf.expand_dims(Xmu, 2) - tf.expand_dims(tf.transpose(Z), 0) # NxDxM
chols = tf.cholesky(tf.expand_dims(tf.matrix_diag(lengthscales ** 2), 0) + Xcov)
Lvec = tf.matrix_triangular_solve(chols, vec)
q = tf.reduce_sum(Lvec ** 2, [1])
chol_diags = tf.matrix_diag_part(chols) # N x D
half_log_dets = tf.reduce_sum(tf.log(chol_diags), 1) - tf.reduce_sum(tf.log(lengthscales)) # N,
return self.variance * tf.exp(-0.5 * q - tf.expand_dims(half_log_dets, 1))
评论列表
文章目录