def inv_model_spec(y):
# construct inverse pass for sampling
shape = final_latent_dimension
z = tf.reshape(y, [-1, shape[1], shape[2], shape[3]])
y = None
for layer in reversed(layers):
y,z = layer.backward(y,z)
# inverse logit
x = tf.inv(1 + tf.exp(-y))
return x
评论列表
文章目录