general.py 文件源码

python
阅读 28 收藏 0 点赞 0 评论 0

项目:hand3d 作者: lmb-freiburg 项目源码 文件源码
def calc_center_bb(binary_class_mask):
    """ Returns the center of mass coordinates for the given binary_class_mask. """
    with tf.variable_scope('calc_center_bb'):
        binary_class_mask = tf.cast(binary_class_mask, tf.int32)
        binary_class_mask = tf.equal(binary_class_mask, 1)
        s = binary_class_mask.get_shape().as_list()
        if len(s) == 4:
            binary_class_mask = tf.squeeze(binary_class_mask, [3])

        s = binary_class_mask.get_shape().as_list()
        assert len(s) == 3, "binary_class_mask must be 3D."
        assert (s[0] < s[1]) and (s[0] < s[2]), "binary_class_mask must be [Batch, Width, Height]"

        # my meshgrid
        x_range = tf.expand_dims(tf.range(s[1]), 1)
        y_range = tf.expand_dims(tf.range(s[2]), 0)
        X = tf.tile(x_range, [1, s[2]])
        Y = tf.tile(y_range, [s[1], 1])

        bb_list = list()
        center_list = list()
        crop_size_list = list()
        for i in range(s[0]):
            X_masked = tf.cast(tf.boolean_mask(X, binary_class_mask[i, :, :]), tf.float32)
            Y_masked = tf.cast(tf.boolean_mask(Y, binary_class_mask[i, :, :]), tf.float32)

            x_min = tf.reduce_min(X_masked)
            x_max = tf.reduce_max(X_masked)
            y_min = tf.reduce_min(Y_masked)
            y_max = tf.reduce_max(Y_masked)

            start = tf.stack([x_min, y_min])
            end = tf.stack([x_max, y_max])
            bb = tf.stack([start, end], 1)
            bb_list.append(bb)

            center_x = 0.5*(x_max + x_min)
            center_y = 0.5*(y_max + y_min)
            center = tf.stack([center_x, center_y], 0)

            center = tf.cond(tf.reduce_all(tf.is_finite(center)), lambda: center,
                                  lambda: tf.constant([160.0, 160.0]))
            center.set_shape([2])
            center_list.append(center)

            crop_size_x = x_max - x_min
            crop_size_y = y_max - y_min
            crop_size = tf.expand_dims(tf.maximum(crop_size_x, crop_size_y), 0)
            crop_size = tf.cond(tf.reduce_all(tf.is_finite(crop_size)), lambda: crop_size,
                                  lambda: tf.constant([100.0]))
            crop_size.set_shape([1])
            crop_size_list.append(crop_size)

        bb = tf.stack(bb_list)
        center = tf.stack(center_list)
        crop_size = tf.stack(crop_size_list)

        return center, bb, crop_size
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号