cplx_momentum_test.py 文件源码

python
阅读 24 收藏 0 点赞 0 评论 0

项目:complex_tf 作者: woodshop 项目源码 文件源码
def testBasic(self):
    for dtype in [tf.complex64]:
      with self.test_session():
        var0 = tf.Variable([1.0, 2.0], dtype=dtype)
        var1 = tf.Variable([3.0, 4.0], dtype=dtype)
        grads0 = tf.constant([0.1, 0.1], dtype=dtype)
        grads1 = tf.constant([0.01, 0.01], dtype=dtype)
        mom_opt = tf.train.MomentumOptimizer(learning_rate=2.0, momentum=0.9)
        mom_update = mom_opt.apply_gradients(
            zip([grads0, grads1], [var0, var1]))
        tf.global_variables_initializer().run()
        # Check we have slots
        self.assertEqual(["momentum"], mom_opt.get_slot_names())
        slot0 = mom_opt.get_slot(var0, "momentum")
        self.assertEquals(slot0.get_shape(), var0.get_shape())
        self.assertFalse(slot0 in tf.trainable_variables())
        slot1 = mom_opt.get_slot(var1, "momentum")
        self.assertEquals(slot1.get_shape(), var1.get_shape())
        self.assertFalse(slot1 in tf.trainable_variables())

        # Fetch params to validate initial values
        self.assertAllClose([1.0, 2.0], var0.eval())
        self.assertAllClose([3.0, 4.0], var1.eval())
        # Step 1: the momentum accumulators where 0. So we should see a normal
        # update: v -= grad * learning_rate
        mom_update.run()
        # Check that the momentum accumulators have been updated.
        self.assertAllCloseAccordingToType(np.array([0.1, 0.1]), slot0.eval())
        self.assertAllCloseAccordingToType(np.array([0.01, 0.01]), slot1.eval())
        # Check that the parameters have been updated.
        self.assertAllCloseAccordingToType(np.array([1.0 - (0.1 * 2.0),
                                                     2.0 - (0.1 * 2.0)]),
                                           var0.eval())
        self.assertAllCloseAccordingToType(np.array([3.0 - (0.01 * 2.0),
                                                     4.0 - (0.01 * 2.0)]),
                                           var1.eval())
        # Step 2: the momentum accumulators contain the previous update.
        mom_update.run()
        # Check that the momentum accumulators have been updated.
        self.assertAllCloseAccordingToType(
            np.array([(0.9 * 0.1 + 0.1), (0.9 * 0.1 + 0.1)]),
            slot0.eval())
        self.assertAllCloseAccordingToType(
            np.array([(0.9 * 0.01 + 0.01), (0.9 * 0.01 + 0.01)]),
            slot1.eval())
        # Check that the parameters have been updated.
        self.assertAllCloseAccordingToType(
            np.array([1.0 - (0.1 * 2.0) - ((0.9 * 0.1 + 0.1) * 2.0),
                      2.0 - (0.1 * 2.0) - ((0.9 * 0.1 + 0.1) * 2.0)]),
            var0.eval())
        self.assertAllCloseAccordingToType(
            np.array([2.98 - ((0.9 * 0.01 + 0.01) * 2.0),
                      3.98 - ((0.9 * 0.01 + 0.01) * 2.0)]),
            var1.eval())
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号