def visualize(self, net_inputs, net_outputs):
# input a batch of training examples of form [Tensor1, Tensor2, ... Tensor_n]
# net_inputs: usually images; net_outputs: usually the labels
# this function visualize the data that is read in, do not return anything but use tf.summary
# visualize the video using multiple images
# their is no way to visualize time sequence now, so isvalid and isstop couldn't be visualized
if not FLAGS.no_image_input:
decoded = net_inputs[0]
visualize = tf.cast(decoded[0,:,:,:,:], tf.uint8)
tf.image_summary("video_seq", visualize, max_images=FLAGS.n_sub_frame)
评论列表
文章目录