def compute_upper_bound(self):
num_data = tf.cast(tf.shape(self.Y)[0], settings.float_type)
Kdiag = self.kern.Kdiag(self.X)
Kuu = self.feature.Kuu(self.kern, jitter=settings.numerics.jitter_level)
Kuf = self.feature.Kuf(self.kern, self.X)
L = tf.cholesky(Kuu)
LB = tf.cholesky(Kuu + self.likelihood.variance ** -1.0 * tf.matmul(Kuf, Kuf, transpose_b=True))
LinvKuf = tf.matrix_triangular_solve(L, Kuf, lower=True)
# Using the Trace bound, from Titsias' presentation
c = tf.reduce_sum(Kdiag) - tf.reduce_sum(LinvKuf ** 2.0)
# Kff = self.kern.K(self.X)
# Qff = tf.matmul(Kuf, LinvKuf, transpose_a=True)
# Alternative bound on max eigenval:
# c = tf.reduce_max(tf.reduce_sum(tf.abs(Kff - Qff), 0))
corrected_noise = self.likelihood.variance + c
const = -0.5 * num_data * tf.log(2 * np.pi * self.likelihood.variance)
logdet = tf.reduce_sum(tf.log(tf.diag_part(L))) - tf.reduce_sum(tf.log(tf.diag_part(LB)))
LC = tf.cholesky(Kuu + corrected_noise ** -1.0 * tf.matmul(Kuf, Kuf, transpose_b=True))
v = tf.matrix_triangular_solve(LC, corrected_noise ** -1.0 * tf.matmul(Kuf, self.Y), lower=True)
quad = -0.5 * corrected_noise ** -1.0 * tf.reduce_sum(self.Y ** 2.0) + 0.5 * tf.reduce_sum(v ** 2.0)
return const + logdet + quad
评论列表
文章目录