def _build_likelihood(self):
"""
Construct a tf function to compute the likelihood of a general GP
model.
\log p(Y, V | theta).
"""
K = self.kern.K(self.X)
L = tf.cholesky(
K + tf.eye(tf.shape(self.X)[0], dtype=settings.float_type) * settings.numerics.jitter_level)
F = tf.matmul(L, self.V) + self.mean_function(self.X)
return tf.reduce_sum(self.likelihood.logp(F, self.Y))
评论列表
文章目录