def create_label_error_rate(logits, labels, timesteps):
with tf.variable_scope('LER'):
decoded, log_prob = tf.nn.ctc_greedy_decoder(logits, timesteps)
decoded = tf.cast(decoded[0], tf.int32)
edit_dist = tf.edit_distance(decoded, labels)
ler = tf.reduce_mean(edit_dist)
tf.summary.scalar('label_error_rate', ler)
return ler
评论列表
文章目录