yolo_v2.py 文件源码

python
阅读 26 收藏 0 点赞 0 评论 0

项目:YOLO2TensorFlow 作者: PaulChongPeng 项目源码 文件源码
def yolo_v2(inputs, num_classes, is_training, num_anchors=5, scope='yolo_v2'):
    with tf.variable_scope(scope, 'yolo_v2', [inputs]) as sc:
        end_points_collection = sc.name + '_end_points'
        with slim.arg_scope([slim.conv2d, slim.fully_connected, slim.max_pool2d],
                            outputs_collections=end_points_collection):
            net = slim.conv2d(inputs, 32, scope='layer_0')
            net = slim.max_pool2d(net, scope='layer_1')
            net = slim.conv2d(net, 64, scope='layer_2')
            net = slim.max_pool2d(net, scope='layer_3')
            net = slim.conv2d(net, 128, scope='layer_4')
            net = slim.conv2d(net, 64, kernel_size=[1, 1], scope='layer_5')
            net = slim.conv2d(net, 128, scope='layer_6')
            net = slim.max_pool2d(net, scope='layer_7')
            net = slim.conv2d(net, 256, scope='layer_8')
            net = slim.conv2d(net, 128, kernel_size=[1, 1], scope='layer_9')
            net = slim.conv2d(net, 256, scope='layer_10')
            net = slim.max_pool2d(net, scope='layer_11')
            net = slim.conv2d(net, 512, scope='layer_12')
            net = slim.conv2d(net, 256, kernel_size=[1, 1], scope='layer_13')
            net = slim.conv2d(net, 512, scope='layer_14')
            net = slim.conv2d(net, 256, kernel_size=[1, 1], scope='layer_15')
            net = slim.conv2d(net, 512, scope='layer_16')
            path_1 = tf.space_to_depth(net, block_size=2, name='path_1')
            net = slim.max_pool2d(net, scope='layer_17')
            net = slim.conv2d(net, 1024, scope='layer_18')
            net = slim.conv2d(net, 512, kernel_size=[1, 1], scope='layer_19')
            net = slim.conv2d(net, 1024, scope='layer_20')
            net = slim.conv2d(net, 512, kernel_size=[1, 1], scope='layer_21')
            net = slim.conv2d(net, 1024, scope='layer_22')
            net = slim.conv2d(net, 1024, scope='layer_23')
            net = slim.conv2d(net, 1024, scope='layer_24')
            path_2 = net
            net = tf.concat([path_1, path_2], 3, name='concat2path')
            net = slim.conv2d(net, 1024, scope='layer_25')
            net = slim.conv2d(net, (num_classes + 5) * num_anchors, kernel_size=[1, 1], scope='layer_26')
            end_points = slim.utils.convert_collection_to_dict(end_points_collection)
            return net, end_points
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号