batch_norm.py 文件源码

python
阅读 32 收藏 0 点赞 0 评论 0

项目:deep-spike 作者: electronicvisions 项目源码 文件源码
def batch_norm(x, n_out, phase_train, scope='bn'):
    """
    Batch normalization on convolutional maps.
    Args:
        x:           Tensor
        n_out:       integer, depth of input maps
        phase_train: boolean tf.Varialbe, true indicates training phase
        scope:       string, variable scope
    Return:
        normed:      batch-normalized maps
    """
    with tf.variable_scope(scope):
        beta = tf.Variable(tf.constant(0.0, shape=[n_out]),
                           name='beta', trainable=True)
        gamma = tf.Variable(tf.constant(1.0, shape=[n_out]),
                            name='gamma', trainable=True)
        batch_mean, batch_var = tf.nn.moments(x, [0], name='moments')
        ema = tf.train.ExponentialMovingAverage(decay=0.5)

        def mean_var_with_update():
            ema_apply_op = ema.apply([batch_mean, batch_var])
            with tf.control_dependencies([ema_apply_op]):
                return tf.identity(batch_mean), tf.identity(batch_var)

        mean, var = tf.cond(phase_train,
                            mean_var_with_update,
                            lambda: (ema.average(batch_mean), ema.average(batch_var)))
        normed = tf.nn.batch_normalization(x, mean, var, beta, gamma, 1e-3)
    return normed
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号