mean_functions.py 文件源码

python
阅读 33 收藏 0 点赞 0 评论 0

项目:GPflow 作者: GPflow 项目源码 文件源码
def __call__(self, X):
        ind = tf.gather(tf.transpose(X), tf.shape(X)[1]-1)  # ind = X[:,-1]
        ind = tf.cast(ind, tf.int32)
        X = tf.transpose(tf.gather(tf.transpose(X), tf.range(0, tf.shape(X)[1]-1)))  # X = X[:,:-1]

        # split up X into chunks corresponding to the relevant likelihoods
        x_list = tf.dynamic_partition(X, ind, self.num_meanfunctions)
        # apply the likelihood-function to each section of the data
        results = [m(x) for x, m in zip(x_list, self.meanfunction_list)]
        # stitch the results back together
        partitions = tf.dynamic_partition(tf.range(0, tf.size(ind)), ind, self.num_meanfunctions)
        return tf.dynamic_stitch(partitions, results)
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号