metric_ops_test.py 文件源码

python
阅读 27 收藏 0 点赞 0 评论 0

项目:lsdc 作者: febert 项目源码 文件源码
def _test_streaming_sparse_average_precision_at_k(
      self, predictions, labels, k, expected, weights=None):
    with tf.Graph().as_default() as g, self.test_session(g):
      if weights is not None:
        weights = tf.constant(weights, tf.float32)
      predictions = tf.constant(predictions, tf.float32)
      metric, update = metrics.streaming_sparse_average_precision_at_k(
          predictions=predictions, labels=labels, k=k, weights=weights)

      # Fails without initialized vars.
      self.assertRaises(tf.OpError, metric.eval)
      self.assertRaises(tf.OpError, update.eval)
      local_variables = tf.local_variables()
      tf.initialize_variables(local_variables).run()

      # Run per-step op and assert expected values.
      if math.isnan(expected):
        self.assertTrue(math.isnan(update.eval()))
        self.assertTrue(math.isnan(metric.eval()))
      else:
        self.assertAlmostEqual(expected, update.eval())
        self.assertAlmostEqual(expected, metric.eval())
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号