def summANDsave(self,training = True):
with tf.name_scope('saversANDsummaries'):
if training:
#saver
self.saver_for_train = tf.train.Saver(keep_checkpoint_every_n_hours=2,
max_to_keep=1) # will save all the tf graph vars!!!
self.saver_for_play = tf.train.Saver(tf.trainable_variables(), keep_checkpoint_every_n_hours=2,
max_to_keep=2) # used after training
self.train_writer = tf.summary.FileWriter(self.trainSummaryDir)
self.latest_checkpoint = tf.train.latest_checkpoint(self.trainDir)
#summaries
# loss
self.lossTotalSummaryHolder = tf.placeholder(dtype = tf.float16)
self.lossTotalSummary = tf.summary.scalar('total Loss per episode', self.lossTotalSummaryHolder)
self.lossAvgSummaryHolder = tf.placeholder(dtype = tf.float16)
self.lossAvgSummary = tf.summary.scalar('Avg.Loss per episode', self.lossAvgSummaryHolder)
self.episodeUpdatesHolder = tf.placeholder(dtype = tf.uint16)
self.episodeUpdates = tf.summary.scalar('Episode updates', self.episodeUpdatesHolder)
else:
self.latest_checkpoint = tf.train.latest_checkpoint(self.playDir)
# reward
self.rewardTotalSummaryHolder = tf.placeholder(dtype=tf.float16)
self.rewardTotalSummary = tf.summary.scalar('total Reward per episode', self.rewardTotalSummaryHolder)
self.rewardAvgSummaryHolder = tf.placeholder(dtype=tf.float16)
self.rewardAvgSummary = tf.summary.scalar('Avg.Reward per episode', self.rewardAvgSummaryHolder)
self.episodeDurSummaryHolder = tf.placeholder(dtype=tf.float16)
self.episodeDurSummary = tf.summary.scalar('Episode duration', self.episodeDurSummaryHolder)
#savers
self.play_writer = tf.summary.FileWriter(self.playSummaryDir)
#merger
self.summary_merger = tf.summary.merge_all()
评论列表
文章目录