def _create_optimizer_sparse(self,
loss: tf.Tensor,
threshold: float,
learning_rate: Union[tf.Tensor, float],
momentum: Union[tf.Tensor, float]) -> tf.Operation:
with tf.variable_scope('optimizer'):
optimizer = tf.train.MomentumOptimizer(learning_rate=learning_rate,
momentum=momentum,
name='optimizer')
self.global_step = tf.Variable(0)
grads_and_vars = optimizer.compute_gradients(loss)
grads_and_vars_sparse = self._apply_prune_on_grads(grads_and_vars,
threshold)
train_op = optimizer.apply_gradients(grads_and_vars_sparse,
global_step=self.global_step,
name='train_op')
return train_op
network_dense.py 文件源码
python
阅读 27
收藏 0
点赞 0
评论 0
评论列表
文章目录