def testDNN():
# copied from quick start sample code https://www.tensorflow.org/get_started/tflearn
# Load datasets.
training_set = tf.contrib.learn.datasets.base.load_csv_with_header(
filename='training.csv',
target_dtype=np.int8,
features_dtype=np.int8)
test_set = tf.contrib.learn.datasets.base.load_csv_with_header(
filename='testset.csv',
target_dtype=np.int8,
features_dtype=np.int8)
feature_columns = [tf.contrib.layers.real_valued_column("", dtype=tf.int8, dimension=1000)]
classifier = tf.contrib.learn.DNNClassifier(feature_columns=feature_columns,
hidden_units=[10],
n_classes=2,
model_dir="/tmp/spammodel3")
# Define the training inputs
def get_train_inputs():
x = tf.constant(training_set.data)
y = tf.constant(training_set.target)
return x, y
# Fit model.
classifier.fit(input_fn=get_train_inputs, steps=2000)
# Define the test inputs
def get_test_inputs():
x = tf.constant(test_set.data)
y = tf.constant(test_set.target)
return x, y
# Evaluate accuracy.
score = classifier.evaluate(input_fn=get_test_inputs,
steps=1)
print("\nTest Accuracy: {0:f}\n".format(score["accuracy"]))
for key in score:
print(key, score[key])
# Test Accuracy: 0.981333
# accuracy/baseline_label_mean 0.0233333
# loss 0.0698425
# auc 0.892803
# global_step 4000
# accuracy/threshold_0.500000_mean 0.981333
# recall/positive_threshold_0.500000_mean 0.257143
# labels/prediction_mean 0.0196873
# accuracy 0.981333
# precision/positive_threshold_0.500000_mean 0.818182
# labels/actual_label_mean 0.0233333
评论列表
文章目录