def batch_norm(input, is_train, scope=None, reuse=None, decay=0.9):
shape = input.get_shape()
num_out = shape[-1]
with tf.variable_op_scope([input], scope, 'BN', reuse=reuse):
beta = tf.get_variable('beta', [num_out],
initializer=tf.constant_initializer(0.0),
trainable=True)
gamma = tf.get_variable('gamma', [num_out],
initializer=tf.constant_initializer(1.0),
trainable=True)
batch_mean, batch_var = tf.nn.moments(input, [0,1,2], name='moments') \
if len(shape)==4 else tf.nn.moments(input, [0], name='moments')
ema = tf.train.ExponentialMovingAverage(decay=decay)
def mean_var_with_update():
ema_apply_op = ema.apply([batch_mean, batch_var])
with tf.control_dependencies([ema_apply_op]):
return tf.identity(batch_mean), tf.identity(batch_var)
mean, var = tf.cond(is_train,
mean_var_with_update,
lambda: (ema.average(batch_mean), ema.average(batch_var)))
return tf.nn.batch_normalization(input, mean, var, beta, gamma, 1e-3)
评论列表
文章目录