def get_test_iterator(src_dataset, src_vocab_table, batch_size, config):
src_eos_id = tf.cast(src_vocab_table.lookup(tf.constant(config.eos)), tf.int32)
src_dataset = src_dataset.map(lambda src: tf.string_split([src]).values)
src_dataset = src_dataset.map(lambda src: src[:config.src_max_len])
src_dataset = src_dataset.map(
lambda src: tf.cast(src_vocab_table.lookup(src), tf.int32))
if config.reverse_src:
src_dataset = src_dataset.map(lambda src: tf.reverse(src, axis=[0]))
src_dataset = src_dataset.map(lambda src: (src, tf.size(src)))
def batching_func(x):
return x.padded_batch(
config.batch_size,
padded_shapes=(tf.TensorShape([None]),
tf.TensorShape([])),
padding_values=(src_eos_id,
0))
batched_dataset = batching_func(src_dataset)
batched_iter = batched_dataset.make_initializable_iterator()
src_ids, src_seq_len = batched_iter.get_next()
return BatchedInput(
initializer=batched_iter.initializer,
source=src_ids,
target_input=None,
target_output=None,
source_sequence_length=src_seq_len,
target_sequence_length=None)
评论列表
文章目录