impl_test.py 文件源码

python
阅读 26 收藏 0 点赞 0 评论 0

项目:transform 作者: tensorflow 项目源码 文件源码
def testUniquesAnalyzerWithHighFrequencyThresholdAndOOVBuckets(self):
    def preprocessing_fn(inputs):
      return {
          'index1':
              tft.string_to_int(
                  tf.string_split(inputs['a']),
                  default_value=-99,
                  top_k=1,
                  num_oov_buckets=3)
      }

    input_data = [
        {'a': 'hello hello world world'},
        {'a': 'hello tarkus toccata'},
        {'a': 'hello goodbye foo'}
    ]
    input_metadata = dataset_metadata.DatasetMetadata({
        'a': sch.ColumnSchema(tf.string, [], sch.FixedColumnRepresentation())
    })
    # Generated vocab (ordered by frequency, then value) should be:
    # ["hello", "world", "goodbye", "foo", "tarkus", "toccata"]. After applying
    # top_k =1 this becomes ["hello"] plus three OOV buckets.
    # The specific output values here depend on the hash of the words, and the
    # test will break if the hash changes.
    expected_data = [
        {'index1': [0, 0, 2, 2]},
        {'index1': [0, 3, 1]},
        {'index1': [0, 2, 1]},
    ]
    expected_metadata = dataset_metadata.DatasetMetadata({
        'index1': sch.ColumnSchema(
            sch.IntDomain(tf.int64, 0, 3, True,
                          'vocab_string_to_int_uniques'), [None],
            sch.ListColumnRepresentation()),
    })
    self.assertAnalyzeAndTransformResults(
        input_data, input_metadata, preprocessing_fn, expected_data,
        expected_metadata)
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号