model_deploy.py 文件源码

python
阅读 23 收藏 0 点赞 0 评论 0

项目:segmentation-models 作者: desimone 项目源码 文件源码
def _optimize_clone(optimizer, clone, num_clones, regularization_losses,
                    **kwargs):
    """Compute losses and gradients for a single clone.

      Args:
        optimizer: A tf.Optimizer  object.
        clone: A Clone namedtuple.
        num_clones: The number of clones being deployed.
        regularization_losses: Possibly empty list of regularization_losses
          to add to the clone losses.
        **kwargs: Dict of kwarg to pass to compute_gradients().

      Returns:
        A tuple (clone_loss, clone_grads_and_vars).
          - clone_loss: A tensor for the total loss for the clone.  Can be None.
          - clone_grads_and_vars: List of (gradient, variable) for the clone.
            Can be empty.
      """
    sum_loss = _gather_clone_loss(clone, num_clones, regularization_losses)
    clone_grad = None
    if sum_loss is not None:
        with tf.device(clone.device):
            clone_grad = optimizer.compute_gradients(sum_loss, **kwargs)
    return sum_loss, clone_grad
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号