inputs.py 文件源码

python
阅读 34 收藏 0 点赞 0 评论 0

项目:tf_classification 作者: visipedia 项目源码 文件源码
def distorted_bounding_box_crop(image,
                                bbox,
                                min_object_covered=0.1,
                                aspect_ratio_range=(0.75, 1.33),
                                area_range=(0.05, 1.0),
                                max_attempts=100,
                                scope=None):
  """Generates cropped_image using a one of the bboxes randomly distorted.
  See `tf.image.sample_distorted_bounding_box` for more documentation.
  Args:
    image: 3-D Tensor of image (it will be converted to floats in [0, 1]).
    bbox: 3-D float Tensor of bounding boxes arranged [1, num_boxes, coords]
      where each coordinate is [0, 1) and the coordinates are arranged
      as [ymin, xmin, ymax, xmax]. If num_boxes is 0 then it would use the whole
      image.
    min_object_covered: An optional `float`. Defaults to `0.1`. The cropped
      area of the image must contain at least this fraction of any bounding box
      supplied.
    aspect_ratio_range: An optional list of `floats`. The cropped area of the
      image must have an aspect ratio = width / height within this range.
    area_range: An optional list of `floats`. The cropped area of the image
      must contain a fraction of the supplied image within in this range.
    max_attempts: An optional `int`. Number of attempts at generating a cropped
      region of the image of the specified constraints. After `max_attempts`
      failures, return the entire image.
    scope: Optional scope for name_scope.
  Returns:
    A tuple, a 3-D Tensor cropped_image and the distorted bbox
  """
  with tf.name_scope(scope, 'distorted_bounding_box_crop', [image, bbox]):
    # Each bounding box has shape [1, num_boxes, box coords] and
    # the coordinates are ordered [ymin, xmin, ymax, xmax].

    # A large fraction of image datasets contain a human-annotated bounding
    # box delineating the region of the image containing the object of interest.
    # We choose to create a new bounding box for the object which is a randomly
    # distorted version of the human-annotated bounding box that obeys an
    # allowed range of aspect ratios, sizes and overlap with the human-annotated
    # bounding box. If no box is supplied, then we assume the bounding box is
    # the entire image.
    sample_distorted_bounding_box = tf.image.sample_distorted_bounding_box(
        tf.shape(image),
        bounding_boxes=bbox,
        min_object_covered=min_object_covered,
        aspect_ratio_range=aspect_ratio_range,
        area_range=area_range,
        max_attempts=max_attempts,
        use_image_if_no_bounding_boxes=True)
    bbox_begin, bbox_size, distort_bbox = sample_distorted_bounding_box

    # Crop the image to the specified bounding box.
    cropped_image = tf.slice(image, bbox_begin, bbox_size)
    return tf.tuple([cropped_image, distort_bbox])
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号