yellowfin.py 文件源码

python
阅读 32 收藏 0 点赞 0 评论 0

项目:YellowFin 作者: JianGoForIt 项目源码 文件源码
def grad_sparsity(self):
    # If the sparse minibatch gradient has 10 percent of its entries
    # non-zero, its sparsity is 0.1.
    # The norm of dense gradient averaged from full dataset
    # are roughly estimated norm of minibatch
    # sparse gradient norm * sqrt(sparsity)
    # An extension maybe only correct the sparse blob.
    non_zero_cnt = tf.add_n([tf.count_nonzero(g) for g in self._grads])
    all_entry_cnt = tf.add_n([tf.size(g) for g in self._grads])
    self._sparsity = tf.cast(non_zero_cnt, self._grads[0].dtype) \
      / tf.cast(all_entry_cnt, self._grads[0].dtype)
    avg_op = self._moving_averager.apply([self._sparsity, ])
    with tf.control_dependencies([avg_op]):
      self._sparsity_avg = self._moving_averager.average(self._sparsity)
    return avg_op
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号