def read_and_decode(filename_queue):
reader = tf.TFRecordReader()
_, serialized_example = reader.read(filename_queue)
features = tf.parse_single_example(serialized_example,features={
'image_raw': tf.FixedLenFeature([], tf.string),
'label_raw': tf.FixedLenFeature([], tf.string)})
image = tf.cast(tf.decode_raw(features['image_raw'], tf.int16), tf.float32)
labels = tf.decode_raw(features['label_raw'], tf.int16)
#PW 2017/03/03: Zero-center data here?
image.set_shape([IMG_DIM*IMG_DIM*IMG_DIM])
image = tf.reshape(image, [IMG_DIM,IMG_DIM,IMG_DIM,1])
labels.set_shape([IMG_DIM*IMG_DIM*IMG_DIM])
labels = tf.reshape(image, [IMG_DIM,IMG_DIM,IMG_DIM])
# Dimensions (X, Y, Z, channles)
return image, labels
评论列表
文章目录