data_handler.py 文件源码

python
阅读 26 收藏 0 点赞 0 评论 0

项目:tf-crnn 作者: solivr 项目源码 文件源码
def data_loader(csv_filename: str, params: Params, batch_size: int=128, data_augmentation: bool=False,
                num_epochs: int=None, image_summaries: bool=False):

    def input_fn():
        # Choose case one csv file or list of csv files
        if not isinstance(csv_filename, list):
            filename_queue = tf.train.string_input_producer([csv_filename], num_epochs=num_epochs, name='filename_queue')
        elif isinstance(csv_filename, list):
            filename_queue = tf.train.string_input_producer(csv_filename, num_epochs=num_epochs, name='filename_queue')

        # Skip lines that have already been processed
        reader = tf.TextLineReader(name='CSV_Reader', skip_header_lines=0)
        key, value = reader.read(filename_queue, name='file_reading_op')

        default_line = [['None'], ['None']]
        path, label = tf.decode_csv(value, record_defaults=default_line, field_delim=params.csv_delimiter,
                                    name='csv_reading_op')

        image, img_width = image_reading(path, resized_size=params.input_shape,
                                         data_augmentation=data_augmentation, padding=True)

        to_batch = {'images': image, 'images_widths': img_width, 'filenames': path, 'labels': label}
        prepared_batch = tf.train.shuffle_batch(to_batch,
                                                batch_size=batch_size,
                                                min_after_dequeue=500,
                                                num_threads=15, capacity=4000,
                                                allow_smaller_final_batch=False,
                                                name='prepared_batch_queue')

        if image_summaries:
            tf.summary.image('input/image', prepared_batch.get('images'), max_outputs=1)
        tf.summary.text('input/labels', prepared_batch.get('labels')[:10])
        tf.summary.text('input/widths', tf.as_string(prepared_batch.get('images_widths')))

        return prepared_batch, prepared_batch.get('labels')

    return input_fn
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号