def BatchClipByL2norm(t, upper_bound, name=None):
"""Clip an array of tensors by L2 norm.
Shrink each dimension-0 slice of tensor (for matrix it is each row) such
that the l2 norm is at most upper_bound. Here we clip each row as it
corresponds to each example in the batch.
Args:
t: the input tensor.
upper_bound: the upperbound of the L2 norm.
name: optional name.
Returns:
the clipped tensor.
"""
assert upper_bound > 0
with tf.name_scope(values=[t, upper_bound], name=name,
default_name="batch_clip_by_l2norm") as name:
saved_shape = tf.shape(t)
batch_size = tf.slice(saved_shape, [0], [1])
t2 = tf.reshape(t, tf.concat(axis=0, values=[batch_size, [-1]]))
upper_bound_inv = tf.fill(tf.slice(saved_shape, [0], [1]),
tf.constant(1.0 / upper_bound))
# Add a small number to avoid divide by 0
l2norm_inv = tf.rsqrt(tf.reduce_sum(t2 * t2, [1]) + 0.000001)
scale = tf.minimum(l2norm_inv, upper_bound_inv) * upper_bound
clipped_t = tf.matmul(tf.diag(scale), t2)
clipped_t = tf.reshape(clipped_t, saved_shape, name=name)
return clipped_t
评论列表
文章目录