bipartite_gcn.py 文件源码

python
阅读 31 收藏 0 点赞 0 评论 0

项目:RelationPrediction 作者: MichSchli 项目源码 文件源码
def collect_messages(self, messages):
        e_forward_mtr = self.graph_representation.get_entity_forward_v_by_m(normalized=True)
        e_backward_mtr = self.graph_representation.get_entity_backward_v_by_m(normalized=True)
        r_forward_mtr = self.graph_representation.get_relation_forward_v_by_m(normalized=True)
        r_backward_mtr = self.graph_representation.get_relation_backward_v_by_m(normalized=True)

        collected_e_messages = tf.sparse_tensor_dense_matmul(r_forward_mtr, messages[2])
        collected_e_messages += tf.sparse_tensor_dense_matmul(r_backward_mtr, messages[3])
        collected_r_messages = tf.sparse_tensor_dense_matmul(e_forward_mtr, messages[0])
        collected_r_messages += tf.sparse_tensor_dense_matmul(e_backward_mtr, messages[1])

        return collected_e_messages, collected_r_messages
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号