def evaluate_and_prdict(model_dir):
"""
Method evaluate validation dataset and predict target class for test dataset
:param model_dir:
:return:
"""
m=build_estimator(model_dir=model_dir)
results = m.evaluate(input_fn=lambda: input_fn(5000,test_data), steps=2000)
for key in sorted(results):
print("%s: %s" % (key, results[key]))
y = m.predict(input_fn=lambda :input_fn_eval(5000,test_data),as_iterable=True)
file_test= open("prediction_final.txt", "w")
for x in y:
file_test.write('%s' % x+"\n")
with tf.Session() as sess:
init = tf.group(tf.initialize_all_variables(), tf.initialize_local_variables())
sess = tf.Session(config=tf.ConfigProto())
sess.run(init)
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess=sess,coord=coord)
coord.request_stop()
coord.join(threads)
sess.close()
wide_deep_evaluate_predict.py 文件源码
python
阅读 32
收藏 0
点赞 0
评论 0
评论列表
文章目录