def testFinalOpsOnEvaluationLoop(self):
value_op, update_op = slim.metrics.streaming_accuracy(
self._predictions, self._labels)
init_op = tf.group(tf.initialize_all_variables(),
tf.initialize_local_variables())
# Create Checkpoint and log directories
chkpt_dir = os.path.join(self.get_temp_dir(), 'tmp_logs/')
gfile.MakeDirs(chkpt_dir)
logdir = os.path.join(self.get_temp_dir(), 'tmp_logs2/')
gfile.MakeDirs(logdir)
# Save initialized variables to checkpoint directory
saver = tf.train.Saver()
with self.test_session() as sess:
init_op.run()
saver.save(sess, os.path.join(chkpt_dir, 'chkpt'))
# Now, run the evaluation loop:
accuracy_value = slim.evaluation.evaluation_loop(
'', chkpt_dir, logdir, eval_op=update_op, final_op=value_op,
max_number_of_evaluations=1)
self.assertAlmostEqual(accuracy_value, self._expected_accuracy)
评论列表
文章目录