def __call__(self, placeholder=None, moving_params=None):
""""""
embeddings = super(PretrainedVocab, self).__call__(placeholder, moving_params=moving_params)
# (n x b x d') -> (n x b x d)
with tf.variable_scope(self.name.title()):
matrix = linalg.linear(embeddings, self.token_embed_size, moving_params=moving_params)
if moving_params is None:
with tf.variable_scope('Linear', reuse=True):
weights = tf.get_variable('Weights')
tf.losses.add_loss(tf.nn.l2_loss(tf.matmul(tf.transpose(weights), weights) - tf.eye(self.token_embed_size)))
return matrix
#return embeddings # changed in saves2/test8
#=============================================================
评论列表
文章目录