def _build_predict(self, Xnew, full_cov=False):
"""
Xnew is a data matrix, point at which we want to predict
This method computes
p(F* | Y )
where F* are points on the GP at Xnew, Y are noisy observations at X.
"""
Kx = self.kern.K(self.X, Xnew)
K = self.kern.K(self.X) + tf.eye(tf.shape(self.X)[0], dtype=settings.float_type) * self.likelihood.variance
L = tf.cholesky(K)
A = tf.matrix_triangular_solve(L, Kx, lower=True)
V = tf.matrix_triangular_solve(L, self.Y - self.mean_function(self.X))
fmean = tf.matmul(A, V, transpose_a=True) + self.mean_function(Xnew)
if full_cov:
fvar = self.kern.K(Xnew) - tf.matmul(A, A, transpose_a=True)
shape = tf.stack([1, 1, tf.shape(self.Y)[1]])
fvar = tf.tile(tf.expand_dims(fvar, 2), shape)
else:
fvar = self.kern.Kdiag(Xnew) - tf.reduce_sum(tf.square(A), 0)
fvar = tf.tile(tf.reshape(fvar, (-1, 1)), [1, tf.shape(self.Y)[1]])
return fmean, fvar
评论列表
文章目录